Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 868
Filtrar
1.
Physiology (Bethesda) ; 38(5): 0, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37405405

RESUMO

The sea urchin larva has been used by biologists for more than a century to study the development and evolution of animals. Surprisingly, very little information has been generated regarding the physiology of this small planktonic organism. However, in the context of anthropogenic CO2-driven ocean acidification (OA), the membrane transport physiology and energetics of this marine model organism have received considerable attention in the past decade. This has led to the discovery of new, exciting physiological systems, including a highly alkaline digestive tract and the calcifying primary mesenchyme cells that generate the larval skeleton. These physiological systems directly relate to the energetics of the organisms when challenged by OA. Here we review the latest membrane transport physiology and energetics in the sea urchin larva, we identify emerging questions, and we point to important future directions in the field of marine physiology in times of rapid climate change.


Assuntos
Ouriços-do-Mar , Água do Mar , Animais , Concentração de Íons de Hidrogênio , Larva/fisiologia , Ouriços-do-Mar/fisiologia , Oceanos e Mares
2.
PeerJ ; 11: e15511, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334121

RESUMO

Background: In temperate macroalgal forests, sea urchins are considered as a keystone species due to their grazing ability. Given their potential to shape benthic communities, we monitored the habitat use by three sympatric sea urchin species and compared their behaviors in a vegetated habitat (VH) and an adjacent isoyake habitat (IH). Methods: We monitored the environmental conditions and sea urchin density along deep and shallow transects of the VH and IH for over a year. The benthic rugosity at both sites were also surveyed. A mark-recapture experiment was conducted on the two most abundant sea urchins, Diadema setosum and Heliocidaris crassispina, to elucidate sea urchin movement patterns and group dynamics. Results: We found that exposure to waves was highest at the VH while the IH was sheltered. The deep IH experienced the least amount of light due to high turbidity. Water temperature patterns were similar across sites. The VH benthic topography was more rugose compared to the smoother and silt-covered IH substate. Peak macroalgal bloom occurred three months earlier in IH, but macroalgae persisted longer at the shallow VH. Among the sympatric sea urchins, H. crassispina was most abundant at the shallow VH and was observed in pits and crevices. The most abundant across IH and in the deep VH was D. setosum, preferring either crevices or free-living, depending on hydrodynamic conditions. The least abundant species was D. savignyi, and most often observed in crevices. Small and medium sea urchins were most often observed at the IH site, whereas larger sea urchins were more likely observed at the VH. The mark-recapture study showed that D. setosum was found to displace further at the IH, and H. crassispina was more sedentary. Additionally, D. setosum was always observed in groups, whereas H. crassispina was always solitary. Discussion: The behaviors of sympatric urchins, Diadema savignyi, D. setosum and H. crassispina, differed in response to changes in the benthic environment and physical conditions. Sea urchin displacement increased when rugosity and wave action were low. Habitat preference shifted to crevices in seasons with high wave action. In general, the mark-recapture experiment showed that sea urchins displaced further at night.


Assuntos
Anthocidaris , Alga Marinha , Animais , Ecossistema , Ouriços-do-Mar/fisiologia , Florestas
3.
Mar Environ Res ; 188: 105979, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37099993

RESUMO

Global warming is threatening marine Antarctic fauna, which has evolved in isolation in a cold environment for millions of years. Facing increasing temperatures, marine Antarctic invertebrates can either tolerate or develop adaptations to these changes. On a short timescale, their survival and resistance to warming will be driven by the efficiency of their phenotypic plasticity through their capacity for acclimation. The current study aims at evaluating the capacity for acclimation of the Antarctic sea urchin Sterechinus neumayeri to predicted ocean warming scenarios (+2, RCP 2.6 and + 4 °C, RCP 8.5, IPCC et al., 2019) and deciphering the subcellular mechanisms underlying their acclimation. A combination of transcriptomics, physiological (e.g. growth rate, gonad growth, ingestion rate and oxygen consumption), and behavioral-based approaches were used on individuals incubated at 1, 3 and, 5 °C for 22 weeks. Mortality was low at warmer temperatures (20%) and oxygen consumption and ingestion rate seemed to reach a stable state around 16 weeks suggesting that S. neumayeri might be able to acclimate to warmer temperatures (until 5 °C). Transcriptomic analyses highlighted adjustments of the cellular machinery with the activation of replication, recombination, and repair processes as well as cell cycle and division and repression of transcriptional and signal transduction mechanisms and defense processes. These results suggest that acclimation to warmer scenarios might require more than 22 weeks for the Antarctic Sea urchins S. neumayeri but that projections of climate change for the end of the century may not strongly affect the population of S. neumayeri of this part of the Antarctic.


Assuntos
Aclimatação , Mudança Climática , Animais , Humanos , Regiões Antárticas , Temperatura , Ouriços-do-Mar/fisiologia
4.
Proc Biol Sci ; 290(1993): 20221897, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36809801

RESUMO

The recent collapse of predatory sunflower sea stars (Pycnopodia helianthoides) owing to sea star wasting disease (SSWD) is hypothesized to have contributed to proliferation of sea urchin barrens and losses of kelp forests on the North American west coast. We used experiments and a model to test whether restored Pycnopodia populations may help recover kelp forests through their consumption of nutritionally poor purple sea urchins (Strongylocentrotus purpuratus) typical of barrens. Pycnopodia consumed 0.68 S. purpuratus d-1, and our model and sensitivity analysis shows that the magnitude of recent Pycnopodia declines is consistent with urchin proliferation after modest sea urchin recruitment, and even small Pycnopodia recoveries could generally lead to lower densities of sea urchins that are consistent with kelp-urchin coexistence. Pycnopodia seem unable to chemically distinguish starved from fed urchins and indeed have higher predation rates on starved urchins owing to shorter handling times. These results highlight the importance of Pycnopodia in regulating purple sea urchin populations and maintaining healthy kelp forests through top-down control. The recovery of this important predator to densities commonly found prior to SSWD, whether through natural means or human-assisted reintroductions, may therefore be a key step in kelp forest restoration at ecologically significant scales.


Assuntos
Asteraceae , Helianthus , Kelp , Strongylocentrotus purpuratus , Animais , Humanos , Cadeia Alimentar , Estrelas-do-Mar , Comportamento Predatório , Florestas , Ouriços-do-Mar/fisiologia , Ecossistema
6.
J Exp Biol ; 225(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35899479

RESUMO

In sea urchins, spermatozoa are stored in the gonads in hypercapnic conditions (pH<7.0). During spawning, sperm are diluted in seawater of pH>8.0, and there is an alkalinization of the sperm's internal pH (pHi) through the release of CO2 and H+. Previous research has shown that when pHi is above 7.2-7.3, the dynein ATPase flagellar motors are activated, and the sperm become motile. It has been hypothesized that ocean acidification (OA), which decreases the pH of seawater, may have a narcotic effect on sea urchin sperm by impairing the ability to regulate pHi, resulting in decreased motility and swimming speed. Here, we used data collected from the same individuals to test the relationship between pHi and sperm motility/performance in the New Zealand sea urchin Evechinus chloroticus under near-future (2100) and far-future (2150) atmospheric PCO2 conditions (RCP 8.5: pH 7.77, 7.51). Decreasing seawater pH significantly negatively impacted the proportion of motile sperm, and four of the six computer-assisted sperm analysis (CASA) sperm performance measures. In control conditions, sperm had an activated pHi of 7.52. Evechinus chloroticus sperm could not defend pHi in future OA conditions; there was a stepped decrease in the pHi at pH 7.77, with no significant difference in mean pHi between pH 7.77 and 7.51. Paired measurements in the same males showed a positive relationship between pHi and sperm motility, but with a significant difference in the response between males. Differences in motility and sperm performance in OA conditions may impact fertilization success in a future ocean.


Assuntos
Água do Mar , Motilidade dos Espermatozoides , Animais , Concentração de Íons de Hidrogênio , Masculino , Nova Zelândia , Oceanos e Mares , Ouriços-do-Mar/fisiologia
7.
Oecologia ; 199(4): 859-869, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35907124

RESUMO

Prey state and prey density mediate antipredator responses that can shift community structure and alter ecosystem processes. For example, well-nourished prey at low densities (i.e., prey with higher per capita predation risk) should respond strongly to predators. Although prey state and density often co-vary across habitats, it is unclear if prey responses to predator cues are habitat-specific. We used mesocosms to compare the habitat-specific responses of purple sea urchins (Strongylocentrotus purpuratus) to waterborne cues from predatory lobsters (Panulirus interruptus). We predicted that urchins from kelp forests (i.e., in well-nourished condition) tested at low densities typically observed in this habitat would respond more strongly to predation risk than barren urchins (i.e., in less nourished condition) tested at high densities typically observed in this habitat. Indeed, when tested at densities associated with respective habitats, urchins from forests, but not barrens, reduced kelp grazing by 69% when exposed to lobster risk cues. Barren urchins that were unresponsive to predator cues at natural, high densities suddenly responded strongly to lobster cues when conspecific densities were reduced. Strong responses of low densities of barren urchins persisted across feeding history (i.e. 0-64 days of starvation). This suggests that barren urchins can respond to predators but typically do not because of high conspecific densities. Because high densities of urchins in barrens should weaken the non-consumptive effects of lobsters, urchins in these habitats may continue to graze in the presence of predators thereby providing a feedback that maintains urchin barrens.


Assuntos
Kelp , Comportamento Predatório , Animais , Sinais (Psicologia) , Ecossistema , Cadeia Alimentar , Ouriços-do-Mar/fisiologia
8.
J Hered ; 113(6): 649-656, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-35778264

RESUMO

Keystone species are known to play a critical role in kelp forest health, including the well-known killer whales, sea otter, sea urchin, kelp trophic cascade in the Aleutian Islands, Alaska, USA. In California, a major player in the regulation of sea urchin abundance, and in turn, the health of kelp forests ecosystems, is a large wrasse, the California Sheephead, Semicossyphus pulcher. We present a reference genome for this ecologically important species that will serve as a key resource for future conservation research of California's inshore marine environment utilizing genomic tools to address changes in life-history traits, dispersal, range shifts, and ecological interactions among members of the kelp forest ecological assemblages. Our genome assembly of S. pulcher has a total length of 0.794 Gb, which is similar to many other marine fishes. The assembly is largely contiguous (N50 = 31.9 Mb) and nearly complete (BUSCO single-copy core gene content = 98.1%). Within the context of the California Conservation Genomics Project (CCGP), the genome of S. pulcher will be used as an important reference resource for ongoing whole genome resequencing efforts of the species.


Assuntos
Kelp , Perciformes , Animais , Kelp/genética , Ecossistema , Cadeia Alimentar , Peixes/genética , Florestas , Ouriços-do-Mar/fisiologia , California
9.
Ecol Lett ; 25(8): 1827-1838, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35767228

RESUMO

Understanding the role of animal behaviour in linking individuals to ecosystems is central to advancing knowledge surrounding community structure, stability and transition dynamics. Using 22 years of long-term subtidal monitoring, we show that an abrupt outbreak of purple sea urchins (Strongylocentrotus purpuratus), which occurred in 2014 in southern Monterey Bay, California, USA, was primarily driven by a behavioural shift, not by a demographic response (i.e. survival or recruitment). We then tracked the foraging behaviour of sea urchins for 3 years following the 2014 outbreak and found that behaviour is strongly associated with patch state (forest or barren) transition dynamics. Finally, in 2019, we observed a remarkable recovery of kelp forests at a deep rocky reef. We show that this recovery was associated with sea urchin movement from the deep reef to shallow water. These results demonstrate how changes in grazer behaviour can facilitate patch dynamics and dramatically restructure communities and ecosystems.


Assuntos
Recifes de Corais , Ecossistema , Comportamento Alimentar , Kelp , Ouriços-do-Mar , Animais , Cadeia Alimentar , Florestas , Ouriços-do-Mar/fisiologia
10.
Sci Rep ; 12(1): 3971, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273278

RESUMO

Sea urchins and sea cucumbers are mutually beneficial organisms in kelp ecosystem. As herbivores, sea urchins process kelp through feeding and egestion, providing inaccessible food for benthic consumers such as sea cucumbers. Sea urchins in turn profit from the sediment cleaned by sea cucumbers. However, behavioral interactions between them remain poorly understood, which greatly hampers our understanding on the relationship between ecologically important benthic species in marine ecosystems and the regulating mechanism. The present study investigated behavioral interactions between sea urchins Strongylocentrotus intermedius and sea cucumbers Apostichopus japonicus in laboratory conditions. We revealed that the presence of sea urchins caused significant higher speed movement of A. japonicus. Interestingly, the negative effects of S. intermedius on A. japonicus were significantly reduced in the shared macroalgal area. For the first time, we found the interspecific responses to alarm cues between sea cucumbers and sea urchins. Conspecific responses were significantly larger than the interspecific responses in both sea urchins and sea cucumbers. This indicates that interspecific response to alarm cues is an efficient approach to anti-predation and coexistence in mutually beneficial organisms. The present study shed light on the interspecific relationships and coexistence between sea urchins and sea cucumbers in kelp ecosystem.


Assuntos
Kelp , Pepinos-do-Mar , Alga Marinha , Strongylocentrotus , Animais , Sinais (Psicologia) , Ecossistema , Ouriços-do-Mar/fisiologia
11.
Biol Rev Camb Philos Soc ; 97(4): 1449-1475, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35255531

RESUMO

Kelp forest ecosystems and their associated ecosystem services are declining around the world. In response, marine managers are working to restore and counteract these declines. Kelp restoration first started in the 1700s in Japan and since then has spread across the globe. Restoration efforts, however, have been largely disconnected, with varying methodologies trialled by different actors in different countries. Moreover, a small subset of these efforts are 'afforestation', which focuses on creating new kelp habitat, as opposed to restoring kelp where it previously existed. To distil lessons learned over the last 300 years of kelp restoration, we review the history of kelp restoration (including afforestation) around the world and synthesise the results of 259 documented restoration attempts spanning from 1957 to 2020, across 16 countries, five languages, and multiple user groups. Our results show that kelp restoration projects have increased in frequency, have employed 10 different methodologies and targeted 17 different kelp genera. Of these projects, the majority have been led by academics (62%), have been conducted at sizes of less than 1 ha (80%) and took place over time spans of less than 2 years. We show that projects are most successful when they are located near existing kelp forests. Further, disturbance events such as sea-urchin grazing are identified as regular causes of project failure. Costs for restoration are historically high, averaging hundreds of thousands of dollars per hectare, therefore we explore avenues to reduce these costs and suggest financial and legal pathways for scaling up future restoration efforts. One key suggestion is the creation of a living database which serves as a platform for recording restoration projects, showcasing and/or re-analysing existing data, and providing updated information. Our work establishes the groundwork to provide adaptive and relevant recommendations on best practices for kelp restoration projects today and into the future.


Assuntos
Ecossistema , Recuperação e Remediação Ambiental , Kelp , Animais , Cadeia Alimentar , Kelp/fisiologia , Ouriços-do-Mar/fisiologia
12.
Sci Total Environ ; 824: 153780, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35176363

RESUMO

To accurately predict the fitness of marine ectotherms under the climate change scenarios, interactive effects from multiple environmental stressors should be considered, such as ocean acidification (OA), ocean warming (OW) and diurnal temperature cycling (DTC). In this work, we evaluated and compared the antioxidant capacity and metabolism homeostasis of two sea urchins, viz. the temperate species Strongylocentrotus intermedius and the tropical species Tripneustes gratilla, in response to oceanic conditions under a climate change scenario. The two species were treated separately/jointly by acidic (pH 7.6), thermal (ambient temperature + 3 °C), and temperature fluctuating (5 °C fluctuations daily) seawater for 28 days. The activities of antioxidant enzymes (catalase and superoxide dismutase) and the cellular energy allocation in the urchins' gonads were assessed subsequently. Results showed that exposure to OA, OW, and DTC all induced antioxidant responses associated with metabolism imbalance in both S. intermedius and T. gratilla. The physiological adjustments and energy strategies towards exposure of OA, OW, and DTC are species specific, perhaps owing to the different thermal acclimation of species from two latitudes. Moreover, decrease of cellular energy allocation were detected in both species under combined OA, OW, and DTC conditions, indicating unsustainable bioenergetic states. The decrease of cellular energy allocation is weaker in T. gratilla than in S. intermedius, implying higher acclimation capacity to maintain the energy homeostasis in tropical urchins. These results suggest that climate change might affect the population replenishment of the two sea urchins species, especially for the temperate species.


Assuntos
Strongylocentrotus , Animais , Antioxidantes/farmacologia , Mudança Climática , Homeostase , Concentração de Íons de Hidrogênio , Ouriços-do-Mar/fisiologia , Água do Mar , Temperatura
13.
PeerJ ; 10: e12820, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35111413

RESUMO

Sea urchin aggregation is a common phenomenon in coastlines. However, it remains controversial whether sea urchins form resource aggregations or behavioral aggregations in a non-spawning season. To clarify, we studied the aggregative responses to food and predators in the sea urchin Mesocentrotus nudus when high fitness areas (HFAs) were scarce versus sufficient. By taking the occupied area of each sea urchin (test diameter + spines =  4.5 cm) as a square (4.5 cm × 4.5 cm), we set scarce HFAs for the sea urchins in Experiment 1 (the squares of HFAs: the area occupied by experimental sea urchins = 1:1) and sufficient HFAs for the sea urchins in Experiment 2 (the squares of HFAs: the area occupied by experimental sea urchins = 2:1). If M. nudus form resource aggregations, they would aggregate passively under the scarce HFAs conditions, but not in the sufficient HFAs conditions. Conversely, if M. nudus form behavioral aggregation, aggregation would occur in both scarce and sufficient HFAs. The present results showed that in the scarce HFAs, M. nudus in the food and predator groups were significantly closer to the food and further from predators, and had significantly more aggregated numbers in HFAs than those in the control group. Sea urchins did not aggregate in response to food or predators under the sufficient HFAs, although significantly more sea urchins of the experimental group was found in HFAs than that of the control group. Sea urchins (at least M. nudus) form resource aggregations that are driven by the scarce HFAs. This provides valuable information into the mechanisms of the aggregation of sea urchins.


Assuntos
Kelp , Ouriços-do-Mar , Animais , Ouriços-do-Mar/fisiologia , Cadeia Alimentar , Alimentos Marinhos
14.
Glob Chang Biol ; 28(9): 3040-3053, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35108424

RESUMO

For marine ectotherms, larval success, planktonic larval duration and dispersal trajectories are strongly influenced by temperature, and therefore, ocean warming and heatwaves have profound impacts on these sensitive stages. Warming, through increased poleward flow in regions with western boundary currents, such as the East Australia Current (EAC), provides opportunities for range extension as propagules track preferred conditions. Two sea urchin species, Centrostephanus rodgersii and Heliocidaris tuberculata, sympatric in the EAC warming hotspot, exhibit contrasting responses to warming. Over half a century, C. rodgersii has undergone marked poleward range extension, but the range of H. tuberculata has not changed. We constructed thermal performance curves (TPC) to determine if contrasting developmental thermal tolerance can explain this difference. The temperatures tested encompassed present-day distribution and forecast ocean warming/heatwave conditions. The broad and narrow thermal optimum (Topt) ranges for C. rodgersii and H. tuberculata larvae (7.2 and 4.7°C range, respectively) matched their realized (adult distribution) thermal niches. The cool and warm temperatures for 50% development to the feeding larva approximated temperatures at adult poleward range limits. Larval cool tolerances with respect to mean local temperature differed, 6.0 and 3.8°C respectively. Larval warm tolerances were similar for both species as are the adult warm range edges. The larvae of both species would be sensitive to heatwaves. Centrostephanus rodgersii has stayed in place and shifted in space, likely due to its broad cold-warm larval thermal tolerance and large thermal safety margins. Phenotypic plasticity of the planktonic stage of C. rodgersii facilitated its range extension. In contrast, larval cold intolerance of H. tuberculata explains its restricted range and will delay poleward extension as the region warms. In a warming ocean, we show that intrinsic thermal biology traits of the pelagic stage provide an integrative tool to explain species-specific variation in range shift patterns.


Assuntos
Ecossistema , Ouriços-do-Mar , Adaptação Fisiológica , Animais , Larva/fisiologia , Ouriços-do-Mar/fisiologia , Temperatura
15.
J Exp Biol ; 225(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35044457

RESUMO

Regenerating structures critical for survival provide excellent model systems for the study of phenotypic plasticity. These body components must regenerate their morphology and functionality quickly while subjected to different environmental stressors. Sea urchins live in high-energy environments where hydrodynamic conditions pose significant challenges. Adhesive tube feet provide secure attachment to the substratum but can be amputated by predation and hydrodynamic forces. Tube feet display functional and morphological plasticity in response to environmental conditions, but regeneration to their pre-amputation status has not been achieved under quiescent laboratory settings. In this study, we assessed the effect of turbulent water movement, periodic emersion and quiescent conditions on the regeneration process of tube foot morphology (length, disc area) and functionality (maximum disc tenacity, stem breaking force). Disc area showed significant plasticity in response to the treatments; when exposed to emersion and turbulent water movement, disc area was larger than that of tube feet regenerated in quiescent conditions. However, no treatment stimulated regeneration to pre-amputation sizes. Tube foot length was unaffected by treatments and remained shorter than non-amputated tube feet. Stem breaking force for amputated and non-amputated treatments increased in all cases when compared with pre-amputation values. Maximum tenacity (force per unit area) was similar among tube feet subjected to simulated field conditions and amputation treatments. Our results suggest a role of active plasticity of tube foot functional morphology in response to field-like conditions and demonstrate the plastic response of invertebrates to laboratory conditions.


Assuntos
Hidrodinâmica , Ouriços-do-Mar , Adesivos , Animais , Ouriços-do-Mar/fisiologia
16.
Cells ; 10(12)2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34944081

RESUMO

The vitelline layer (VL) of a sea urchin egg is an intricate meshwork of glycoproteins that intimately ensheathes the plasma membrane. During fertilization, the VL plays important roles. Firstly, the receptors for sperm reside on the VL. Secondly, following cortical granule exocytosis, the VL is elevated and transformed into the fertilization envelope (FE), owing to the assembly and crosslinking of the extruded materials. As these two crucial stages involve the VL, its alteration was expected to affect the fertilization process. In the present study, we addressed this question by mildly treating the eggs with a reducing agent, dithiothreitol (DTT). A brief pretreatment with DTT resulted in partial disruption of the VL, as judged by electron microscopy and by a novel fluorescent polyamine probe that selectively labelled the VL. The DTT-pretreated eggs did not elevate the FE but were mostly monospermic at fertilization. These eggs also manifested certain anomalies at fertilization: (i) compromised Ca2+ signaling, (ii) blocked translocation of cortical actin filaments, and (iii) impaired cleavage. Some of these phenotypic changes were reversed by restoring the DTT-exposed eggs in normal seawater prior to fertilization. Our findings suggest that the FE is not the decisive factor preventing polyspermy and that the integrity of the VL is nonetheless crucial to the egg's fertilization response.


Assuntos
Ditiotreitol/farmacologia , Desenvolvimento Embrionário/efeitos dos fármacos , Fertilização/fisiologia , Ouriços-do-Mar/fisiologia , Actinas/metabolismo , Animais , Cálcio/metabolismo , Fertilização/efeitos dos fármacos , Óvulo/efeitos dos fármacos , Óvulo/fisiologia , Óvulo/ultraestrutura , Ouriços-do-Mar/efeitos dos fármacos , Ouriços-do-Mar/ultraestrutura
17.
Sci Rep ; 11(1): 21583, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732750

RESUMO

Cell-cell fusion is limited to only a few cell types in the body of most organisms and sperm and eggs are paradigmatic in this process. The specialized cellular mechanism of fertilization includes the timely exposure of gamete-specific interaction proteins by the sperm as it approaches the egg. Bindin in sea urchin sperm is one such gamete interaction protein and it enables species-specific interaction with a homotypic egg. We recently showed that Bindin is essential for fertilization by use of Cas9 targeted gene inactivation in the sea urchin, Hemicentrotus pulcherrimus. Here we show phenotypic details of Bindin-minus sperm. Sperm lacking Bindin do not bind to nor fertilize eggs at even high concentrations, yet they otherwise have wildtype morphology and function. These features include head shape, tail length and beating frequency, an acrosomal vesicle, a nuclear fossa, and they undergo an acrosomal reaction. The only phenotypic differences between wildtype and Bindin-minus sperm identified is that Bindin-minus sperm have a slightly shorter head, likely as a result of an acrosome lacking Bindin. These data, and the observation that Bindin-minus embryos develop normally and metamorphose into normal functioning adults, support the contention that Bindin functions are limited to species-specific sperm-egg interactions. We conclude that the evolutionary divergence of Bindin is not constrained by any other biological roles.


Assuntos
Infertilidade Masculina/genética , Receptores de Superfície Celular/metabolismo , Espermatozoides/fisiologia , Espermatozoides/ultraestrutura , Acrossomo/metabolismo , Reação Acrossômica , Animais , Sistemas CRISPR-Cas , Biologia do Desenvolvimento , Feminino , Fertilização , Glicoproteínas/genética , Infertilidade Masculina/metabolismo , Masculino , Mutação , Óvulo/fisiologia , Fenótipo , Ouriços-do-Mar/fisiologia , Especificidade da Espécie , Motilidade dos Espermatozoides/fisiologia , Interações Espermatozoide-Óvulo , Espermatozoides/metabolismo
18.
Sci Rep ; 11(1): 18868, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552166

RESUMO

Ecosystems and their biota operate on cyclic rhythms, often entrained by predictable, small-scale changes in their natural environment. Recording and understanding these rhythms can detangle the effect of human induced shifts in the climate state from natural fluctuations. In this study, we assess long-term patterns of reproductive investment in the Antarctic sea urchin, Sterechinus neumayeri, in relation to changes in the environment to identify drivers of reproductive processes. Polar marine biota are sensitive to small changes in their environment and so serve as a barometer whose responses likely mirror effects that will be seen on a wider global scale in future climate change scenarios. Our results indicate that seasonal reproductive periodicity in the urchin is underpinned by a multiyear trend in reproductive investment beyond and in addition to, the previously reported 18-24 month gametogenic cycle. Our model provides evidence that annual reproductive investment could be regulated by an endogenous rhythm since environmental factors only accounted for a small proportion of the residual variation in gonad index. This research highlights a need for multiyear datasets and the combination of biological time series data with large-scale climate metrics that encapsulate multi-factorial climate state shifts, rather than using single explanatory variables to inform changes in biological processes.


Assuntos
Reprodução , Ouriços-do-Mar/fisiologia , Animais , Regiões Antárticas , Mudança Climática , Ecossistema , Feminino , Gametogênese/fisiologia , Masculino , Estações do Ano
19.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34301868

RESUMO

Otopetrins comprise a family of proton-selective channels that are critically important for the mineralization of otoliths and statoconia in vertebrates but whose underlying cellular mechanisms remain largely unknown. Here, we demonstrate that otopetrins are critically involved in the calcification process by providing an exit route for protons liberated by the formation of CaCO3 Using the sea urchin larva, we examined the otopetrin ortholog otop2l, which is exclusively expressed in the calcifying primary mesenchymal cells (PMCs) that generate the calcitic larval skeleton. otop2l expression is stimulated during skeletogenesis, and knockdown of otop2l impairs spicule formation. Intracellular pH measurements demonstrated Zn2+-sensitive H+ fluxes in PMCs that regulate intracellular pH in a Na+/HCO3--independent manner, while Otop2l knockdown reduced membrane proton permeability. Furthermore, Otop2l displays unique features, including strong activation by high extracellular pH (>8.0) and check-valve-like outwardly rectifying H+ flux properties, making it into a cellular proton extrusion machine adapted to oceanic living conditions. Our results provide evidence that otopetrin family proton channels are a central component of the cellular pH regulatory machinery in biomineralizing cells. Their ubiquitous occurrence in calcifying systems across the animal kingdom suggest a conserved physiological function by mediating pH at the site of mineralization. This important role of otopetrin family proton channels has strong implications for our view on the cellular mechanisms of biomineralization and their response to changes in oceanic pH.


Assuntos
Biomineralização , Calcificação Fisiológica/fisiologia , Homeostase , Canais Iônicos/metabolismo , Larva/fisiologia , Prótons , Ouriços-do-Mar/fisiologia , Animais , Transporte Biológico , Concentração de Íons de Hidrogênio , Canais Iônicos/genética , Análise de Célula Única , Transcriptoma
20.
Sci Rep ; 11(1): 15116, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34302013

RESUMO

Poor growth and disease transmission of small sea urchins Strongylocentrotus intermedius in summer greatly hamper the production efficiency of the longline culture. Reducing the adverse effects of high stocking density while maintaining high biomass is essential to address these problems. Here, we conducted a laboratory experiment to simulate the multi-layer culture for sea urchins at ambient high temperatures (from 22.2 to 24.5 °C) in summer for ~ 7 weeks. Survival, body size, lantern growth, gut weight, food consumption, Aristotle's lantern reflex, 5-hydroxytryptamine concentration, pepsin activity and gut morphology were subsequently evaluated. The present study found that multi-layer culture led to significantly larger body size than those without multi-layer culture (the control group). This was probably because of the greater feeding capacity (indicated by lantern growth and Aristotle's lantern reflex) and food digestion (indicated by morphology and pepsin activity of gut) in the multi-layer cultured sea urchins. These results indicate that multi-layer is an effective approach to improving the growth efficiency of sea urchins at high temperatures. We assessed whether eliminating interaction further improve these commercially important traits of sea urchins in multi-layer culture. This study found that eliminating interactions displayed greater body size and Aristotle's lantern reflex than those not separated in the multi-layer culture. This approach also significantly reduced the morbidity compared with the control group. These novel findings indicate that eliminating interactions in multi-layer culture greatly contributes to the growth and disease prevention of sea urchins at high temperatures. The present study establishes a new technique for the longline culture of sea urchins in summer and provides valuable information into the longline culture management of other commercially important species (e.g. scallops, abalones and oysters).


Assuntos
Ouriços-do-Mar/fisiologia , Strongylocentrotus/fisiologia , Animais , Tamanho Corporal/fisiologia , Alimentos , Temperatura Alta , Fenótipo , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...